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Abstract
A general class of cosmological models driven by a nonlocal scalar field inspired
by string field theory is studied. Using the fact that the considering linear
nonlocal model is equivalent to an infinite number of local models we have
found an exact special solution of the nonlocal Friedmann equations. This
solution describes a monotonically increasing universe with the phantom dark
energy.

PACS numbers: 11.25.−w, 11.25.uv, 11.10.Lm

1. Introduction

Recently, string theory and brane cosmology have been intensively discussed as promising
candidates for the theoretical explanation of the obtained experimental data (see, for example,
[1–6]).

The purpose of this paper is to present new results concerning studies of nonlocal linear
models in the Friedmann–Robertson–Walker universe. These models are inspired by the
string field theory (SFT) (for review of the SFT see [7]). A distinguished feature of nonlocal
linear and nonlinear models [8–21] is the presence of infinite number of higher derivative
terms (note also nonlocal models in the Minkowski spacetime [22–29]). For special values of
the parameters these models describe linear approximations to the cubic bosonic or nonBPS
fermionic SFT nonlocal tachyon models, p-adic string models or the models with the invariance
of the action under the shift of the dilaton field to a constant. The nonBPS fermionic string
field tachyon nonlocal model has been considered as a candidate for the dark energy [8].

Present cosmological observations [30] do not exclude an evolving dark energy (DE) state
parameter w, whose current value can be less than −1, that means the violation of the null
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energy condition (NEC) (see [31, 32] for a review of the DE problems and [33] for a search
for a super-acceleration phase of the universe).

Field theories, which violate the NEC [34, 35], are of interest not only for the construction
of cosmological dark energy models with the state parameter w < −1, but also for the solution
of the cosmological singularity problem. A possible way to avoid cosmological singularities
consists of dealing with nonsingular bouncing cosmological solutions. In this scenario, the
universe contracts before the bounce [2]. Such models have strong coupling and higher-
order string corrections are inevitable. It is important to construct nonsingular bouncing
cosmological solutions in order to make a concrete prediction of bouncing cosmology.

A simple possibility to violate the NEC is just to deal with a phantom field. In the present
paper we consider nonlocal models which are linear and admit solutions, which are linear
combinations of local fields. Some of these local fields are phantoms. Namely due to the
presence of these ghost excitations such nonlocal models are of interest for cosmology.

At the same time there are well-known problems with instability of quantum models with
phantoms, namely a loss of unitarity and so on. We believe that nonlocal SFT models in true
vacua are stable with respect to quantum fluctuations. This question has to be considered in
the full SFT framework and demands further investigations. We also believe that due to these
string theory origins the corresponding nonlocal cosmological models, which are nonlinear
in matter fields, have no problem with instability in the quantum case. In this paper we only
consider the classical case and models, which are linear in a nonlocal scalar field.

In our previous paper [15] as well as in paper [16] nonlocal linear models have already
been studied. In [15], the nonlocal linear model has been studied in the flat spacetime and we
have proposed special deformations of the potential, which allow us to get the same scalar field
solutions in flat and nonflat (the FRW metric) cases. As a result, we have obtained nonlinear
models in the FRW metric. In [16] few exact solutions to the linear model in the FRW metric
have been found. In this paper, we present a systematic method that permits us to transform
the initial nonlocal system into an infinity set of local systems. The choice of a local system
is equivalent to the choice of a special solution of the nonlocal system. This approach allows
us to use the standard method of analysis of the differential equations and in particular to find
exact solutions.

The paper is organized as follows. In section 2, we describe string-inspired models with
quadratic nonlocal potentials. In section 3, we assume that the metric is given and consider
the equation of motion as an equation for the nonlocal scalar field. We construct solutions,
using eigenfunctions of the �g-operator with eigenvalues, belonging to the set of roots of the
characteristic equation. In section 4, we find values of the energy density and pressure for
these solutions. In section 5, we consider the Friedmann–Robertson–Walker universe and find
local models, which correspond to particular solutions of the initial nonlocal model. In the
case of dilaton massless scalar field we construct the general solutions for the corresponding
local model, which are the special exact solutions for the initial nonlocal model as well. We
analyze cosmological properties of the obtained solutions.

2. Nonlocal linear models

In this paper we consider a model of gravity coupling with a nonlocal scalar field, which is
induced by the string field theory

S =
∫

d4x
√−g

(
M2

p

2
R +

M4
s

g4

(
1

2
φF

(−�g

/
M2

s

)
φ − �′

))
, (1)
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where gµν is the metric tensor (we always use the signature (−, +, +, +)), �g =
1√−g

∂µ

√−ggµν∂ν,Mp is a mass Planck, Ms is a characteristic string scale related to the

string tension α′: Ms = 1/
√

α′, φ is a dimensionless scalar field, g4 is a dimensionless four-
dimensional effective coupling constant related to the ten-dimensional string coupling constant

g0 and the compactification scale. � = M4
s

g4
�′ is an effective four-dimensional cosmological

constant.
The form of the function F is inspired by a nonlocal action appeared in the string field

theory. We consider the case

F(z) = −ξ 2z + 1 − c e−2z, (2)

where ξ is a real parameter and c is a positive constant. Using dimensionless spacetime
variables and a rescaling we can rewrite (1) for F given by (2) as follows:

S =
∫

d4x
√−g

(
m2

p

2
R +

ξ 2

2
φ�gφ +

1

2
(φ2 − c �2) − �′

)
, (3)

where

� = e�gφ

and m2
p = g4M

2
p

/
M2

s . Generally speaking the string scale does not coincide with the Planck
mass. That gives a possibility to get a realistic value of �.

The form of the term (e�gφ)2 is analogous to the form of the interaction term for the
tachyon field in the SFT action. The case of the open cubic superstring field theory tachyon
corresponds to ξ 2 = −1

/(
4 ln

(
4

3
√

3

)) ≈ 0.9556 and c = 3 (see [25–27]).
The equation of motion for the scalar field has the following form:

(ξ 2�g + 1) e−2�gφ = c φ. (4)

The energy–momentum tensor

Tαβ = − 2√−g

δS

δgαβ
(5)

has the following explicit form:

Tαβ = −gαβ

(
1

2
φ2 − ξ 2

2
∂µφ∂µφ − c

2
(e�gφ)2 − �′

)
− ξ 2∂αφ∂βφ

− gαβc

∫ 1

0
dρ

[(
e(1+ρ)�gφ

)(
�g e(1−ρ)�gφ

)
+

(
∂µ e(1+ρ)�gφ

)(
∂µ e(1−ρ)�gφ

)]
+ 2c

∫ 1

0
dρ

(
∂α e(1+ρ)�gφ

)(
∂β e(1−ρ)�gφ

)
.

Note that the energy–momentum tensor Tαβ includes the nonlocal terms, so the Einstein’s
equations are nonlocal ones.

3. Generalization of flat dynamics

3.1. Flat dynamics

In the flat case action (1) has the following form:

Sflat = 1

2

∫
d4x φF(−�)φ. (6)

3
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If the scalar field φ depends only on time, then the equation of motion (4) is reduced to the
following linear equation:

F
(
∂2

0

)
φ(t) = 0. (7)

A plane wave φ = eαt is a solution of (7) if α is a root of the characteristic equation

F(α2) = 0. (8)

For the case of F given by (2) equation (7) has the following form:

−ξ 2∂2
0 φ + φ − c e−2∂2

0 φ = 0. (9)

This equation has been analyzed in detail in our paper [15]. Using the explicit form of the
function φ(t) we have found the solutions of equations of motion and the corresponding
values of the energy density and pressure. In this paper, we generalize these calculations for
the nonflat case.

3.2. The equation of motion in an arbitrary metric

Let us consider equation (4). Really this equation is a consequence of the Einstein’s equations,
hence both the metric gµν and the scalar field φ are unknown. We assume that the metric gµν

is given and consider equation (4) as an equation in φ.
In this paper we study solutions in the following form:

φ =
N∑

n=1

φn, (10)

where N is a natural number, φn is a solution of the following equation:

�gφn = −α2
nφn, (11)

and αn are solutions to the corresponding characteristic equation:

F
(
α2

n

) ≡ −ξ 2α2
n + 1 − c e−2α2

n = 0. (12)

Without loss of generality we can assume that for any n and k �= n the conditions α2
n �= α2

k

are satisfied. Indeed, if the sum (10) includes two summands φk1 and φk2 , which correspond
to one and the same α2

k , then we can consider them as one summand φk ≡ φk1 + φk2 , which
corresponds to α2

k .
We start with the construction of a solution to equation (4) in the case N = 1:

�gφ = −α2φ, (13)

where α is a root of (12). Note that this ansatz is widely used in studying nonlocal linear
models [6, 13, 16–18, 36]. Equation (12) has the following solutions

αn = ± 1

2ξ

√
4 + 2ξ 2Wn

(
−2c e−2/ξ 2

ξ 2

)
, n = 0,±1,±2, . . . (14)

where Wn is the n–s branch of the Lambert function satisfying a relation W(z) eW(z) = z. The
Lambert function is a multivalued function, so equation (12) has an infinite number of roots.
Parameters ξ and c are real, therefore if αn is a root of (12), then the adjoined number α∗

n is a
root as well. Note that if αn is a root of (12), then −αn is a root too.

If α2 = α2
0 is a multiple root, then at this point F

(
α2

0

) = 0 and F ′(α2
0

) = 0. These
equations give that

α2
0 = 1

ξ 2
− 1

2
, (15)

4
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Figure 1. The dependence of the function g(m2, c), which is equal to ξ2, on m at c = 1/2 (left),
c = 1 (center) and c = 2 (right).

hence α2
0 is a real number and all multiple roots of F

(
α2

0

) = 0 are either real or pure imaginary.
Double roots exist if and only if

c = ξ 2

2
e(2/ξ 2−1). (16)

Note that the existence of double roots means that there exist solutions of equation (4),
which do not satisfy equation (13), but satisfy the following equation:

�2
gφ = α4φ. (17)

In the flat case an example of such a solution is the function φ(t) = t exp(αt) (see [15]).
All roots for any ξ and c are no more than double degenerated, because F ′′(α2

0

) �= 0. In this
paper, we consider such values of ξ and c that equality (16) is not satisfied and all roots are
simple ones. Under this assumption we can consider the set of the solutions (10) as a quite
general solution.

3.3. Real roots of the characteristic equation

For some values of the parameters ξ and c equation (12) has real roots. To mark out real
values of α we will denote real α as m: m = α.

To determine values of the parameters at which equation (12) has real roots we rewrite
this equation in the following form:

ξ 2 = g(m2, c), where g(m2, c) = e2m2 − c

m2 e2m2 . (18)

The dependence of g(m, c) on m for different c is presented in figure 1. This function has a
maximum at m2

max

m2
max = −1

2
− 1

2
W−1

(
−e−1

c

)
, (19)

provided c is such that W−1
(− e−1

c

)
< −1, in other words 0 < c < 1.

There are three different cases (see figure 1):

• If c < 1, then equation (12) has two simple real roots: m = ±m1 for any values ξ .
• If c = 1, then equation (12) has a zero root. Nonzero real roots exist if and only if ξ 2 < 2.
• If c > 1, then equation (12) has

5
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– no real roots for ξ 2 > ξ 2
max, where

ξ 2
max = 1 − c e−2m2

max

m2
max

= − 2

W−1(−e−1/c)
; (20)

– two real double roots m = ±mmax for ξ 2 = ξ 2
max;

– four real simple roots for ξ 2 < ξ 2
max. In this case we have the following restriction

on real roots: m2 > 1
2 ln c.

Note that the values of roots do not depend on H(t) and, therefore, coincide with roots in
the flat case, which have been found in [15].

4. Energy density and pressure

4.1. General formula

Let us calculate the energy density and the pressure for the solution (10). Up to this moment
we do not put any restrictions on the metric tensor gµν , now we start to consider the case of
the spatially flat Friedmann–Robertson–Walker universe:

ds2 = −dt2 + a2(t)
(
dx2

1 + dx2
2 + dx2

3

)
(21)

and spatially homogeneous solutions φ(t). In this case,

Tαβ = gαβ diag{E,−P,−P,−P}, (22)

where the energy density E and pressure P are as follows:

E = Ek + Ep + Enl2 + Enl1 + �′, P = Ek − Ep + Enl2 − Enl1 − �′. (23)

Nonlocal term Enl1 plays the role of an extra potential term and Enl12 plays the role of an extra
kinetic term. The explicit form of the terms on the rhs of (23) is [24, 29] as follows:

Ek = ξ 2

2
(∂0φ)2,

Ep = −1

2
(φ2 − c(eDφ)2),

Enl1 = c

∫ 1

0
(e(1+ρ)Dφ)(−D e(1−ρ)Dφ) dρ,

Enl2 = −c

∫ 1

0
(∂ e(1+ρ)Dφ)(∂ e(1−ρ)Dφ) dρ,

(24)

where

D ≡ −∂2
0 − 3H(t)∂0, H = ∂0a

a
. (25)

For N = 1 we obtain

E ≡ E(φ1) + �′ = ηα1

2

(
(∂0φ1)

2 − α2
1φ

2
1

)
+ �′, (26)

P ≡ P(φ1) − �′ = ηα1

2

(
(∂0φ1)

2 + α2
1φ

2
1

) − �′, (27)

where for arbitrary α

ηα ≡ ξ 2 + 2ξ 2α2 − 2. (28)

6
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Note that considering the flat spacetime [15], we have introduced the parameter
pα ≡ α2ηα . The use of parameter ηα instead of pα is more convenient, because we do
not need to consider the case α = 0 separately.

Hereafter, we denote the energy density and pressure of the function φ(t) as the functionals
E(φ) and P(φ), respectively.

For the solution φ(t) = φ1(t) + φ2(t) it is convenient to write the energy density in the
following form:

E = E(φ1 + φ2) + �′ = E(φ1) + E(φ2) + Ecross(φ1, φ2) + �′,

where the functional Ecross(φ1, φ2) is defined as follows:

Ecross(φ1, φ2) = Ekcr + Enl2cr + Epcr + Enl1cr ,

Ekcr ≡ ξ 2∂0φ1∂0φ2, Epcr ≡ −φ1φ2 + c e−α2
1−α2

2 φ1φ2,

Enl1cr ≡ −c

∫ 1

0

[(
e(1+ρ)Dφ1

)
D

(
e(1−ρ)Dφ2

)
+

(
e(1+ρ)Dφ2

)
D

(
e(1−ρ)Dφ1

)]
dρ,

Enl2cr ≡ −c

∫ 1

0

[
∂0

(
e(1+ρ)Dφ1

)
∂0

(
e(1−ρ)Dφ2

)
+ ∂0

(
e(1+ρ)Dφ2

)
∂0

(
e(1−ρ)Dφ1

)]
dρ.

(29)

Using (12), we calculate Enl2cr :

Enl2cr = −c
(
e−2α2

1 − e−2α2
2
)

α2
2 − α2

1

∂0φ1∂0φ2 = −ξ 2∂0φ1∂0φ2. (30)

So,

Enl2cr + Ekcr = 0. (31)

The straightforward calculation also gives that

Enl1cr = −c e−α2
1−α2

2 φ1φ2 +
c
(
α2

2 e−2α2
1 − α2

1 e−2α2
2
)

α2
2 − α2

1

φ1φ2 = −Epcr . (32)

Therefore, we obtain that

Ecross(φ1, φ2) = 0 and Pcross(φ1, φ2) = 0, (33)

where

Pcross(φ1, φ2) ≡ Ekcr + Enl2cr − Epcr − Enl1cr . (34)

So,

E(φ1 + φ2) = E(φ1) + E(φ2), (35)

P(φ1 + φ2) = P(φ1) + P(φ2). (36)

Finally, for the case of N summands we obtain (compare with [14, 15, 17])

E = E

(
N∑

n=1

φn

)
+ �′ =

N∑
n=1

E(φn) + �′, (37)

P = P

(
N∑

n=1

φn

)
− �′ =

N∑
n=1

P(φn) − �′. (38)

From formulae (37) and (38) we see that the energy density and the pressure are sums of
‘individual’ energy densities and pressures, respectively, and have no crossing term.

7
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Figure 2. The dependence of pm on m at c = 1/2 (right), c = 1 (center) and c = 2 (left).

In the case of an arbitrary metric gαβ and a scalar field φn(t, x1, x2, x3), which satisfies
equation (11), we obtain that

Tαβ(φn) = −gαβ

(
1

2
φ2

n − ξ 2

2
∂µφn∂

µφn − c

2

(
e�gφn

)2
)

− ξ 2∂αφn∂βφn

− c gαβ

∫ 1

0
dρ

[(
e(1+ρ)�gφn

)(
�g e(1−ρ)�gφn

)
+

(
∂µ e(1+ρ)�gφn

)(
∂µ e(1−ρ)�gφn

)]
+ 2c

∫ 1

0
dρ

(
∂α e(1+ρ)�gφn

)(
∂β e(1−ρ)�gφn

)
= gαβ

(
ηαn

2
∂µφn∂

µφn − ηαn
α2

n

2
φ2

n

)
− ηαn

∂αφn∂βφn.

The energy–momentum tensor, which corresponds to the function (10), is as follows:

Tαβ = Tαβ

(
N∑

n=1

φn

)
+ gαβ�′ =

N∑
n=1

Tαβ(φn) + gαβ�′. (39)

4.2. Energy density and pressure for real α

As we have seen in section 3 for some values of parameters ξ and c equation (12) has real
roots. We denote as ηm the value of ηα for real α = m:

ηm = ξ 2(1 + 2m2) − 2 = e2m2 − c

m2 e2m2 (1 + 2m2) − 2. (40)

If and only if c > 1, then there exists the interval 0 < m2 < m2
max, on which ηm < 0. Some

part of this interval is not physical, because g(m2, c) < 0 on this part. The straightforward
calculations (compare with [15]) show that at the point

m2
max = −1

2
− 1

2
W−1

(
−e−1

c

)
(41)

we obtain ηm(mmax) = 0. So, for c > 1 and ξ 2 < ξ 2
max we have two positive roots of (12):

m1 and m2 > m1, with ηm1 < 0 and ηm2 > 0. In the following section we use this fact to
construct a quintom local model with one tachyon real scalar field, which corresponds to ηm2 ,
and one phantom real scalar field, which corresponds to ηm1 . For different values of c the
function pm ≡ m2ηm is presented in figure 2.

8
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5. Construction of solutions in the Friedmann–Robertson–Walker metric

5.1. Equations of motion and Friedmann equations

In the spatially flat Friedmann–Robertson–Walker universe we get the following equation of
motion for the space homogeneous scalar field φ:

(ξ 2D + 1) e−2Dφ = c φ. (42)

The Friedmann equations have the following form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3H 2 = 1

m2
p

E,

Ḣ = − 1

2m2
p

(E + P),

(43)

where a dot denotes the time derivative (Ḣ ≡ ∂0H).
The second equation of system (43) is the nonlinear integral equation in H(t):

Ḣ = − 1

m2
p

(
ξ 2

2
(∂0φ)2 − c

∫ 1

0
(∂0 e(1+ρ)Dφ)(∂0 e(1−ρ)Dφ) dρ

)
. (44)

Let us make an assumption that φ(t) and H(t) satisfy the following equation

Dφ = −α2φ, (45)

where α is a root of equation (12).
In this case equation (42) is solved. Using formulae (26) and (27), we rewrite system (43)

in the following form:⎧⎪⎪⎨
⎪⎪⎩

3H 2 = ηα

2m2
p

(φ̇2 − α2φ2 + �′),

Ḣ = − ηα

2m2
p

φ̇2.
(46)

It is easy to check that (45) is a consequence of system (46). Instead of (46) we can consider
the following third-order system:⎧⎨

⎩
φ̈ + 3Hφ̇ = α2φ,

Ḣ = − ηα

2m2
p

φ̇2.
(47)

This system has the following integral of motion:

I1 = 3H 2 − ηα

2m2
p

(φ̇2 − α2φ2) = ηα

2m2
p

�′, (48)

therefore, choosing the initial data for (47) one fixes the value of �′.
So, our assumption allows us to transform a system with a nonlocal scalar field into a

system with a local one. In the same way, we obtain systems with two or more local fields.
Let

φ(t) =
N∑

n=1

φn(t), (49)

9
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where all φn(t) are solutions of (45) with the same function H(t) and different values of α:
α = αn. If all αn (n = 1 . . . N) are different roots of (12), then system (43) transforms into
the following system with N scalar fields:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3H 2 = 1

2m2
p

(
N∑

n=1

ηαn

(
φ̇2

n − α2
nφ

2
n

)
+ �′

)
,

Ḣ = − 1

2m2
p

(
N∑

n=1

ηαn
φ̇2

n

)
.

(50)

In the case of two real roots α1 > 0 and α2 > α1:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3H 2 = 1

2m2
p

(
ηα1

(
φ̇2

1 − α2
1φ

2
1

)
+ ηα2

(
φ̇2

2 − α2
2φ

2
2

)
+ �′) ,

Ḣ = − 1

2m2
p

(
ηα1 φ̇

2
1 + ηα2 φ̇

2
2

)
,

(51)

we have obtained that ηα1 < 0 and ηα2 > 0. Therefore the corresponding two-field model is a
quintom one, in other words, includes one phantom scalar field (ηα1 < 0) and one scalar field
with the canonical kinetic term (ηα2 > 0) and with the tachyon mass term

(
α2

2ηα2 > 0
)
. The

SFT-inspired nonlinear local quintom models and their exact solutions have been studied, for
example, in [37, 38]. To obtain exact solutions with physically important properties usually
one should add some additional terms in the potential, which tend to zero in the limit of the
flat spacetime [15, 37–39]. It is interesting that system (46) allows us to find a physically
important exact solution without adding any term in the potential.

5.2. Exact solution in the case N = 1

Let us consider system (46) with real α. Two exact nontrivial real solutions of this system
have been presented in [16]. In our notations these solutions are the following:

• At α �= 0 and ηα < 0

φ(t) = A(t − t0), �′ = −A2, H(t) = α2

3
(t − t0), (52)

where

A = ±
√

−2m2
pα2

3ηα

, (53)

t0 is an arbitrary constant.
• At α = 0,�′ = 0 and ηα = ξ 2 − 2 > 0

φ(t) = ±
√

2m2
p

3ηα

ln(t − t0) + C1, H(t) = 1

3(t − t0)
, (54)

where t0 and C1 are arbitrary constants. Note that the root α = 0 exists if and only if
c = 1.

In this paper we present a new solution, which looks more realistic for the SFT-inspired
cosmological model. At the present time, one of the possible scenarios of the universe evolution
considers the universe to be a D3-brane (three spatial and one time variable) embedded in
higher-dimensional spacetime. This D-brane is unstable and does evolve to the stable state.
This process is described by the dynamics of the open string, whose ends are attached to the
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Figure 3. The functions H1(t) (right) and φ1(t) (left) at �′ = 3,m2
p = 1, ξ2 = 1, t0 = 0 and

C2 = 0.

brane (see reviews [7] and references therein). A phantom scalar field is an open string theory
tachyon. According to the Sen’s conjecture [28], this tachyon describes brane decay, at which
a slow transition in a stable vacuum takes place. This vacuum is characterized by the absence
of open string states, i.e. corresponds to states of the closed string. This picture allows us to
specify the asymptotic conditions for the scalar field. We assume that the phantom field φ(t)

smoothly rolls from the unstable perturbative vacuum (φ = 0) to a nonperturbative one, for
example φ = A0, where A0 is a nonzero constant and stops there. It is easy to see that exact
solutions presented in [16] do not satisfy these conditions.

At c = 1 our model (3) is a nonlocal model for the dilaton coupling to the gravitation
field. Its distinguished feature is the invariance under the shift of the dilaton field to a constant.
In this case one of the solutions of equation (12) is α = 0. Summing the first and second
equations of (46), we obtain

Ḣ = �′

2m2
p

− 3H 2. (55)

If �′ > 0, then we obtain a real solution:

H1(t) =
√

�′

6m2
p

tanh

(√
3�′

2m2
p

(t − t0)

)
, (56)

where t0 is an arbitrary real constant.
It is easy to see that Ḣ1(t) > 0 for any t, hence from the second equation of (46) we obtain

that φ(t) can be a real scalar field only if it is a phantom one (ηα < 0, that is equivalent to
ξ 2 < 2). The explicit form of φ(t) is as follows:

φ1(t) = ±
√

2m2
p

3(2 − ξ 2)
arctan

(
sinh

(√
3�′

2m2
p

(t − t0)

))
+ C2, (57)

where C2 is an arbitrary constant. Functions H1(t) and φ1(t) are presented in figure 3.
The Hubble parameter H1(t) is a monotonically increasing function, so using

w = −1 − 2

3

Ḣ1

H 2
1

, (58)

we obtain w < −1. So, solution (56) corresponds to phantom dark energy. Note that we have
found two-parameter set of exact solutions at any �′ > 0. In other words, at any �′ > 0 we
have found the general solution of (46), which corresponds to α = 0. At �′ = 0 the solution
(56) transforms to a constant. In the case �′ = 0 the general solution has been found in [16].
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In the case �′ < 0 we obtain the following general solution:

H2(t) = −
√

−�′

6m2
p

tan

(√
− 3�′

2m2
p

(t − t0)

)
, (59)

φ2(t) = ±
√

8(ξ 2 − 2)

3m2
p

arctanh

⎛
⎝cos

(√−3�′
2m2

p
(t − t0)

) − 1

sin
(√−3�′

2m2
p

(t − t0)
)

⎞
⎠ + C2. (60)

This solution is real at ξ 2 > 2. It is interesting that the type of solutions essentially depends
on the sign of �′. The solution with the SFT-inspired boundary conditions corresponds to
�′ > 0.

6. Conclusions

We have studied the SFT-inspired linear nonlocal model. This model has an infinite number
of higher derivative terms and are characterized by two positive parameters: ξ 2 and c.
For particular cases of the parameters ξ 2 and c the corresponding actions describe linear
approximations to either the bosonic or nonBPS fermionic cubic SFT as well as to the
nonpolynomial SFT.

Roots of the characteristic equation do not depend on the form of the metric and this
property allows us to study the properties of the energy density and pressure. We have found
that in an arbitrary metric the energy–momentum tensor for an arbitrary N-mode solution
is a sum of the energy–momentum tensors for the corresponding one-mode solutions. In
the Friedmann–Robertson–Walker spatially flat metric the pressure for a one-mode solution
corresponding to a real root can be positive or negative, depending on parameters of our
nonlocal model. Namely, for c � 1 the one-mode pressure is positive and for c > 1 it could
be negative or positive.

The investigation performed in this paper shows that the general field equations in linear
nonlocal models admit an equivalent description in terms of local theory and as a consequence
we have representations (37) and (38) for the energy and pressure. This calculation also
supports the use of the Ostrogradski representation for our system in the case of arbitrary
metric.

To distinguish our previous paper [15] we do not use any approximation scheme and do
not add any terms in the potential. We have shown that our linear model with one nonlocal
scalar field generates an infinite number of local models. These models can be studied
numerically and we plan to present this analysis in future papers. Some of these models
have been solved explicitly and, hence, special exact solutions for the nonlocal model in the
Friedmann–Robertson–Walker metric have been obtained. In particular we have constructed
an exact kink-like solution, which corresponds to monotonically increasing universe with
phantom dark energy. Note that the obtained behavior of the Hubble parameter is close to
the behavior of the Hubble parameter in the nonlinear nonlocal model [8], which has recently
been obtained numerically [19].
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